
Stochastic dynamics in systems with unidirectional delay coupling: Two-state description

Makoto Kimizuka and Toyonori Munakata
Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan

�Received 18 June 2009; published 31 August 2009�

We study stochastic dynamics of two-state particles coupled unidirectionally with delay. We give exact
results for the stationary distribution function pst and the time correlation function �TCF� when the system
consists of two �N=2� and three �N=3� particles. Based on these results, effects of delay are discussed and
compared with the N=1 case, studied by Tsimring and Pikovsky �Phys. Rev. Lett. 87, 250602 �2001��. Next,
we consider the general N-particle system, for which we give exact expressions for pst and the TCF, which are
inferred based on the N=2 and N=3 solutions and then confirmed via detailed arguments. It is pointed out that
the stationary state is mapped to Ising spin model with ferro�antiferro�magnetic interaction when delay feed-
back is positive �negative�.
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I. INTRODUCTION

Much attention is focused on a system with noise and
delay. For linear systems, which is described by a linear
Langevin equation with delay feedback, we observed consid-
erable progresses in our understanding of the properties of
the system and some exact results are obtained for the �sta-
tionary� distribution function, the time correlation function
�TCF� �1,2�, and the energy dissipation rate �3�. Exact results
are useful because they often serve as a starting point for
perturbational treatments �4�.

For nonlinear stochastic systems with delay, we have in-
teresting studies for biological models, such as pupils dy-
namics �5�, cell differentiation �6�, and human motor control
�7� if we mention a few. As a typical nonlinear system, we
consider in this paper the delay stochastic bistable system,
which is gathering a lot of attention partly from the general
interest in the interplay among nonlinearity, noise, and delay
and partly in connection with a model for vertical-cavity
surface-emitting lasers �VCSELs� with optoelectronic feed-
back �8�.

It is notable that some experimental results such as the
power spectrum and the mean residence time for the VCSEL
could be theoretically explained �9� based on the two-state
description of the delay stochastic bistable model, first pro-
posed by Tsimring and Pikovsky �TP� �10�. That is, TP re-
duced the original continuum description based on the non-
linear Langevin equation with delay to a master equation,
which is touched on in Sec. II to make this paper self-
contained. The master equation could be solved to give exact
results on the TCF and its power spectrum �10�, thus reveal-
ing effects of delay such as the coherence resonance and also
the stochastic resonance �SR� in the linear response to the
external periodic force.

The two-state model had already played an important role
in clarifying physics behind the nonlinear Langevin model in
relation to SR �11�. An analytic result was given �12� for the
signal to noise ratio and this greatly deepened our under-
standing of the problem. It is noted also that simulations, if
the system is a coupled one with many degrees of freedom,
are greatly facilitated by the introduction of the two-state
description.

The purpose of this paper is to extend the two-state ap-
proach to the unidirectionally coupled double-well systems
and to study properties of the systems, such as the stationary
many-body distribution function and the TCF, both analyti-
cally and numerically. In Sec. II we present the master equa-
tion for the system, consisting of unidirectionally coupled
two-state N particles with delay. In Sec. III the master equa-
tion are solved for the case N=2 and N=3 to give exact
results for the stationary distribution and the TCF, after the
case N=1 �10� is briefly reviewed. It is noted that the sta-
tionary distribution function depends on the delay time �, in
sharp contrast with the case N=1. We also plot explicitly the
stationary distribution and the TCF and discuss properties of
the unidirectionally coupled two-state systems for N=2 and
N=3. In Sec. IV we give analytic solutions to the general
N-body problems, inferred from the exact solutions for cases
N=2 and N=3. This is justified by detailed arguments. Fi-
nally this paper is concluded with some remarks.

II. BISTABLE SYSTEMS WITH DELAY:
TWO-STATE DESCRIPTION

As a typical bistable system with delay let us consider the
Langevin equation

dx�t� = �x�t� − x3�t� + �x�t − ���dt + �2Ddw�t� , �1�

where � is the delay and dw�t� denotes the Gaussian noise
with the relation

�dw�t�dw�t��� = �t,t�dt . �2�

Here the Kronecker delta function �t,t� is zero if the time
segments dt and dt� are different and one if the two time
segments are the same. The delay force �x�t−�� on the right-
hand side of Eq. �1� represents an attractive�repulsive� force
from x�t−�� if ��0��0�.

It is well known that analytic approaches to Eq. �1� are
difficult due to the intrinsic nonlinearity of Eq. �1�. Also
from a simulational point of view, it is very time consuming,
especially when we consider the N-particle extension of Eq.
�1� to be introduced in Sec. II, to solve the stochastic differ-
ential Eq. �1� �or especially Eq. �8� below� for long time to
obtain a time correlation function
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��t� = �x�0�x�t�� . �3�

Under this circumstance, the two-state description of Eq. �1�
achieved considerable success, enabling one to have an ana-
lytic result for ��t� defined by

��t� = ���0���t�� , �4�

with ��t� taking either the value 1 or −1 depending on x�t�.
Let us first turn to this two-state description for the case N
=1 �10�.

A. Two-state description of the Langevin model (N=1)

If p�1, t�=1− p�−1, t� denotes the probability that ��t�
=1, we have a master equation

dp�1,t�/dt = − T�1 → − 1,t�p�1,t� + T�− 1 → 1,t�p�− 1,t� ,

�5�

where T�1→−1, t� and T�−1→1, t� denote the transition
probabilities from the state 1 to −1 and from −1 to 1 at time
t, respectively, and these are expressed as �10�

T�1 → − 1,t� = 	1p�1,t − �� + 	2p�− 1,t − �� ,

T�− 1 → 1,t� = 	2p�1,t − �� + 	1p�− 1,t − �� . �6�

If there were no delay force, we would have T�1→
−1, t�=T�−1→1, t��	0 since the double-well potential in
Eq. �1� is symmetric �13�. Owing to the interaction due to
delay, a particle with ��t�=1 hops to the state −1 more easily
when ��t−�=−1� than when ��t−�=1�, where � is assumed
to be positive. Thus 	2 is larger than 	1. When the noise
intensity D is small and the Kramers expression for the hop-
ping rate is valid, 	1 and 	2 can be expressed in terms of the
parameters appearing in the Langevin model �Eq. �1�� �see
Eq. �3� of Refs. �10,14��. Since we are mainly interested in
the two-state model, we will not pursue this connection any
more �14�. From Eqs. �5� and �6� we have �10�

dp�1,t�/dt = − �	1 + 	2�p�1,t� + �	2 − 	1�p�1,t − �� + 	1

�7�

based on which we can discuss the TCF �Eq. �4��.

B. Unidirectional coupling of N particles

We now consider a simple generalization of the model
described by the Langevin Eq. �1� and the corresponding
master Eq. �7�. In Eq. �1� the output signal is fed back to
itself. If we consider that the particle i feeds forward its
output to the system �i+1�. Then under the cyclic arrange-
ment of particles, we find that xi�t� of the particle i is de-
scribed by

dxi�t� = �xi�t� − xi
3�t� + �xi−1�t − ���dt + �2Ddwi�t� , �8�

where dwi�t� denotes noise with the relation

�dwi�t�dwj�t��� = �i,j�t,t�dt , �9�

with x0=xN. The coupling in Eq. �8� may be called unidirec-
tional.

Following the similar reasoning as TP �10�, we have a
master equation for the probability that �i= 
1 at time t,
pi�
1, t� , �i=1,2 , . . . ,N�,

dpi�1,t�/dt = − �	1 + 	2�pi�1,t� + �	2 − 	1�pi−1�1,t − �� + 	1,

�10�

with p0�
1, t�= pN�
1, t�.

III. pst AND TCF OF THE TWO-STATE SYSTEMS
IN THE CASES N=2 AND N=3

A. Two-state systems in the case N=1 [10]

Before proceeding to our problem of unidirectional cou-
pling with delay, we briefly discuss how one can calculate
the TCF from Eq. �7�, in a way generalizable to the case N
�2 �Eq. �10��. First let us express ��t� �Eq. �4�� as

��t� = 	
s0,s1

s1s0p�s0,0;s1,t� = 	
s0,s1

s1s0pst�s0�p�s1,t
s0� ,

�11�

where p�s0 ,0 ;s1 , t� denotes the two-time joint probability for
��t=0�=s0 and ��t�=s1 and pst�s0� is the probability for �
=s0 in a stationary state. Similarly p�s1 , t 
s0� is the condi-
tional probability for ��t�=s1 given that ��t=0�=s0. It is
important to stress here that the system is assumed to be in a
stationary state, which is realized long after one starts a
�Monte Carlo� simulation of the dynamics, corresponding to
Eq. �7�.

Basically we can use two invariance relations to simplify
the calculations of the TCF. One is the invariance due to
system symmetry for inversion s→−s. From this we have
immediately

pst�s� = pst�− s� = 1/2, �12�

p�1,t
1� = p�− 1,t
− 1�, p�1,t
− 1� = p�− 1,t
1� . �13�

These relations simplify Eq. �11� to

��t� = 2p�1,t
1� − 1. �14�

The other invariance relation comes from the stationarity
of the process p�s0 ,0 ;s1 , t�= p�s0 ,−t ;s1 ,0� for arbitrary s0
= 
1 and s1= 
1. This relation is rewritten as

pst�s0�p�s1,t
s0� = pst�s1�p�s0,− t
s1� . �15�

With use of the symmetry relations �12�, �13�, and �15�, we
immediately see that the conditional probability p�s1 , t 
s0� is
even in t,

p�s1,t
s0� = p�s1,− t
s0� . �16�

From this it is seen that ��t� is an even function of t as it
should be. To calculate ��t�, it is only necessary to note that
the conditional probability p�1, t 
1� is obtained as the �even�
solution to Eq. �7�, which satisfies the initial condition
p�1,0�=1. Analytic solution to Eq. �7� is available and de-
tailed discussions on the TCF and the residence time distri-
bution function are given in �9,10�.
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B. Two-state system in the case N=2: Theory

We can generalize the treatment above to study the TCF
and the stationary distribution function for the case N=2. We
have from Eq. �10� that

dp1�1,t�/dt = − �	1 + 	2�p1�1,t� + �	2 − 	1�p2�1,t − �� + 	1,

dp2�1,t�/dt = − �	1 + 	2�p2�1,t� + �	2 − 	1�p1�1,t − �� + 	1.

�17�

In what follows, we try to calculate the self- and cross-
correlation functions

�s�t� = ��1�t��1�0�� = 	
s1
0,s2

0,s1

s1s1
0pst�s1

0,s2
0�p�s1,t
s1

0,s2
0� ,

�c�t� = ��1�t��2�0�� = 	
s1
0,s2

0,s1

s1s2
0pst�s1

0,s2
0�p�s1,t
s1

0,s2
0� ,

�18�

and the stationary distribution function pst��1=s1 ,�2=s2�
� pst�s1 ,s2�.

1. Some symmetry relations

We consider important symmetry relations necessary to
make the calculations of �s�t� and �c�t� as simple as pos-
sible. To simplify notations, we define four states A, B, C,
and D by

A:��1 = �2 = 1�, B:��1 = 1,�2 = − 1� ,

C:��1 = − 1,�2 = 1�, D:��1 = �2 = − 1� . �19�

Since our system is symmetric with respect to the inversion
s1 ,s2→−s1 ,−s2 we have

pst�A� = pst�D�, pst�B� = pst�C� . �20�

Similarly, we have

a � p�B,t
B� = p�C,t
C�,b � p�A,t
D� = p�D,t
A� ,

d � p�A,t
A� = p�D,t
D�,e � p�B,t
C� = p�C,t
B� ,

x � p�B,t
D� = p�C,t
D� = p�B,t
A� = p�C,t
A� ,

y � p�A,t
B� = p�A,t
C� = p�D,t
B� = p�D,t
C� , �21�

where use is made of the symmetry 1 ,2↔2,1 in deriving,
e.g., p�B , t 
D�= P�C , t 
D�. In passing we note from the con-
servation of probability that

d + b + 2x = 1, a + e + 2y = 1. �22�

Other useful relations can be derived from the stationarity
condition

pst�s0
1,s0

2�p�s1
1,s1

2,t
s0
1,s0

2� = pst�s1
1,s2

2�p�s0
1,s0

2,− t
s1
1,s1

2� .

�23�

From pst�A�p�D , t 
A�= pst�D�p�A ,−t 
D� and Eq. �20� we
have p�A , t 
D�= p�D ,−t 
A�, resulting in the fact that b in Eq.

�21� is even in t. By similar arguments we can show that
conditional probability functions a ,d ,e in Eq. �21� are also
even in t.

2. Stationary distribution functions

We turn to pst�s1 ,s2�. After summing over s0
1 ,s0

2 on both
sides of Eq. �23�, we have the eigenvalue problem

	
s0
1,s0

2

pst�s0
1,s0

2�p�s1
1,s1

2,t
s0
1,s0

2� = pst�s1
1,s2

2� . �24�

With use of relations �20�–�22� we only have the following
equation from Eq. �24�

p�B,t
A�pst�A� = p�A,t
B�pst�B� . �25�

From this, we have

p�B,t
A� = p�B,t;A,0�/pst�A� = p�A,t;B,0�/pst�A�

= p�A,0;B,− t�/pst�A� = p�B,− t
A� . �26�

Similarly we can show that p�A , t 
B�= p�A ,−t 
B�, thus the
conditional probability x and y in Eq. �21� turned out to be
even. Since p��1=1 , t 
A�= p�1,1 , t 
A�+ p�1,−1, t 
A�, we see
that p��1=1 , t 
A� is also even. Similarly p��1=−1, t 
C� is
even.

Now we are in a position to calculate the stationary dis-
tribution function explicitly. When t is small enough not to
create correlation between �1�t� and �2�t�, we can utilize
statistical independence of p�s1

1 , t 
s0
1 ,s0

2� and p�s1
2 , t 
s0

1 ,s0
2� to

have

p�s1
1,s1

2,t
s0
1,s0

2� = p�s1
1,t
s0

1,s0
2�p�s1

2,t
s0
1,s0

2� . �27�

To be more specific, p��1=1 , t 
A� is given as an even solu-
tion to Eq. �17� which satisfies the initial condition p1�1, t
=0�=1, p2�1, t=0�=1, and p��1=1 , t 
A�= p�1, t�. p��1
=1 , t 
B� is similarly given as an even solution to Eq. �17�
with p1�1, t=0�=1, p2�1, t=0�=0. Following a similar pro-
cedure as in Ref. �10�, we have for 0� t��

p��1 = 1,t
A� = �1 + G�t��/2,

p��1 = 1,t
B� = �1 + H�t��/2, �28�

where

G�t� =
�p exp�− �t� + m exp���t − ����

�p + m exp�− ����
,

H�t� =
�p exp�− �t� − m exp���t − ����

�p − m exp�− ����
, �29�

with

p = �	1 + �	2, m = �	2 − �	1, � = 2�	1	2. �30�

With these results we now have for small t

p�B,t
A� = �1 + G�t���1 − G�t��/4,

p�A,t
B� = �1 + H�t���1 − H�t��/4. �31�

From Eq. �25�, we have thus after lengthy calculations
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pst�A�/pst�B� = �1 − H2�t��/�1 − G2�t�� = FA
2 /FB

2 , �32�

with

FA = �p + m exp�− ���� ,

FB = �p − m exp�− ���� . �33�

It is amusing that the ratio �Eq. �32�� becomes independent
of t, thus, from pst�A�+ pst�B�=1 /2, our method gives an
exact stationary distribution, to be checked in Sec. III C.

pst�A� = FA
2 /�2�FA

2 + FB
2�� ,

pst�B� = FB
2 /�2�FA

2 + FB
2�� . �34�

3. TCF

From the above it is readily seen that Eq. �18� is reduced
to

�s�t� = 4pst�A�p��1 = 1,t
A� + 4pst�B�p��1 = 1,t
B� − 1.

�35�

�c�t� = 4pst�A�p��1 = 1,t
A� + 4pst�B�p��1 = − 1,t
B� − 1.

�36�

We can extend these functions to the region 2�� t��
with Eq. �28� as inputs to Eq. �17�. The stationary distribu-
tion function pst�A� and pst�B�, which must be determined to
calculate the TCF �Eqs. �35� and �36�� are given by Eq. �34�.

C. Two-state system in the case N=2: Numerics

The stationary distribution function pst�A� and pst�B� ob-
tained by Monte Carlo simulations �crosses� and from the
theory �Eq. �34�� �curves� are shown in Fig. 1. When �=0
and ��0, there is a direct attractive force between �1�t� and
�2�t� and two spins take the configuration A= �1,1� more
often than B= �1,−1�, thus pst�A�� pst�B� �Fig. 1�a��. As �
becomes large, this correlation becomes weak since the at-
traction is between �1�t� and �2�t−�� and thermal noise act-
ing between t−� and t tends to destroy the correlations. As
we observe in Fig. 1 pst�A�→1 /4 and pst�B�→1 /4 as �
→
. When ��0 the interaction between the spin becomes

repulsive and pst�A�� pst�B� �Fig. 1�b��. It is noted that our
theory reproduces simulational results quite well.

Next, we turn to the TCF �s�t� �Fig. 2� and �c�t� �Fig. 3�.
It is noted that, when ��0, �1�t� is positively correlated with
�2�t−��, which in turn is positively correlated with �1�t
−2��. This is the reason we observe positive correlations in
�s�t� around t
2� as a bump �Fig. 2�a��. When � is negative,
two negative correlations are easily seen to produce positive
correlations �Fig. 2�b��. This may be the reason for the simi-
larity between �s�t� for positive and negative �.

Next we plot �c�t� for �=0.05 �Fig. 3�a�� and �=−0.05
�Fig. 3�b��. We observe positive �negative� correlations in
�c�t� as the convex �concave� at t
� for ��0��0�, which is
also observed for the case N=1. After the first bump in �c�t�
similar but weaker bumps are seen about ��
2� apart as in
Fig. 2 for �s�t�. Due to fluctuations �� becomes larger than
2�. Agreement between simulations and theory is seen to be
excellent.

D. Two-state systems in the case N=3

We can calculate the stationary distribution function and
the TCF in the case N=3, following the similar route as for
the case N=2. From the symmetry of the system with respect
to inversion s1 ,s2 ,s3→−s1 ,−s2 ,−s3, we have only two sta-
tionary distribution functions. If we define the three-particle
states K and L by

K:�1 = 1,�2 = 1,�3 = 1,

L:�1 = 1,�2 = 1,�3 = − 1, �37�

we have

pst�K� = FA/�2�FA + 3FB�� ,

0
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FIG. 1. �Color online� Stationary distribution functions pst�A�
�solid� and pst�B� �dotted� from simulations �crosses� and theory
�curves� as a function of the delay � �Eq. �34��. For the parameter
values 	1 and 	2 we refer to Ref. �14� and ��a� and �b�� we use the
same values hereafter.
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FIG. 2. �Color online� The TCF �s�t� is plotted for N=1 �dotted�
and N=2 �solid and dashed �simulation�� as a function of t
for �=1000 �14� and D=0.005 ��a� �=+0.05 and �b� �=−0.05�
�Eq. �35��.
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FIG. 3. �Color online� The TCF �c�t� is plotted for N=1 �dotted�
and N=2 �solid and dashed�simulation�� as a function of t for
�=1000 �14� and D=0.005 ��a� �=+0.05 and �b� �=−0.05� �Eq.
�36��.
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pst�L� = FB/�2�FA + 3FB�� , �38�

where FA and FB are defined by Eq. �33�.
The TCF �1,k�t����1�t��k�0���k=1,2 ,3� is given after

lengthy calculations, as in the case N=2, by

�1,k�t� = �p4−k�m exp�− ����k−1 exp�− �t�

+ pk−1�m exp�− ����4−k exp��t��/�p3

+ �m exp�− ����3� , �39�

where p, m, and � are defined by Eq. �30�.
As for the stationary distribution functions, plotted in Fig.

4, pst�K� is larger than pst�L� when ��0 due to the attractive
interaction between the particles as in the case N=2 �see Fig.
1�. When � becomes large both pst�K� and pst�L� approaches
1/8 since there are 8 states for N=3.

The TCF are plotted in Fig. 5. For a positive � �Fig. 5�a��,
we notice two characteristic features. One is that the interval
of the peaks is about 3� �actually slightly longer than 3� due
to fluctuations�. The other is that the first peak of �1,i�t� is
located around t
�4− i��. These results are well understood
in terms of delay attractive interaction between the particles
�i−1� and i. For a negative � �Fig. 5�b��, we notice that the
correlations observed between the bumps 3� apart is nega-
tive. The first concave �around t
�� and convex bumps
�around t
2�� in �1,2�t� and �1,3�t�, respectively, are also
readily seen from the negative correlation between neighbor-
ing particle with time � apart. As before, theory and simula-
tions agree quite well.

IV. ANALYTIC APPROACH TO pst AND TCF
IN THE GENERAL N-PARTICLE CASE

In view of the lengthy calculations for N=3 necessary to
have the exact results �Eqs. �38� and �39��, it became rather

obvious that to pursue a similar approach for larger N was
not useful. Thus our strategy is first to infer the general form
for the stationary distribution and the TCF, which are next to
be confirmed.

A. Stationary distribution functions

From Eq. �10� and the solutions for the cases N=1,2 ,3,
we notice that there are only four types of conditional prob-
abilities for 0� t��, which are

p��k = s1
k,t
s0

1,s0
2, . . . ,s0

N� = �1 
 G�t��/2,

for s1
k = 
 s0

k,s0
k = s0

k−1,

p��k = s1
k,t
s0

1,s0
2, . . . ,s0

N� = �1 
 H�t��/2,

for s1
k = 
 s0

k,s0
k � s0

k−1, �40�

where H�t� and G�t� are defined by Eq. �29�. For the time
region −�� t�0, we have two cases. If the condition s0

k−1

=s0
k+1 is satisfied, the conditional probabilities are even in t

and t on the right-hand side of Eq. �40� needs to be replaced
with −t. If this condition is not met, �1
G�t�� /2 on the
right-hand side of Eq. �40� should be replaced by
�1
H�t�� /2 and �1
H�t�� /2 should be replaced by
�1
G�t�� /2. These solutions are easily confirmed to be valid
by substituting them into Eq. �10�.

We can calculate the transition probabilities for the gen-
eral case by following the similar steps presented in Sec.
III B 2 for N=2. That is, as was done in Eq. �27� we have for
a small time region,

p�s1
1,s1

2, . . . ,s1
N,t
s0

1,s0
2, . . . ,s0

N� = �
k=1

N

p�s1
k,t
s0

1,s0
2, . . . ,s0

N� .

�41�

pst�s0
1 ,s0

2 , . . . ,s0
N� are inferred to be given by

pst�s0
1,s0

2, . . . ,s0
N� = QN�FB

2 /FA
2�k

= QN��1 − G�t�2�/�1 − H�t�2��k,

QN = �FA/2�N/�pN + �m exp�− ����N� , �42�

where FA and FB are defined by Eq. �32�. Equation �42�
shows that the distribution function depends only on the
number k with 2k denoting the number of interfaces present
in the spin configuration s0

1 ,s0
2 , . . . ,s0

N. When s0
i and s0

i+1 are
different, we consider that there is an interface between the
spin i and i+1. Since we assume that N spins are put on a
circle, we consider that there is an interface if s0

1 and s0
N are

different. Then the number of interfaces produced by the spin
configuration is always even, which we denote by 2k.

QN in Eq. �42� is a normalization constant. At this point
we introduce a technique useful for confirmation of our in-
ferred solutions for pst �Eq. �42�� and the TCF �Eq. �53��
below. Let us introduce the binary numbers bi= 
1�i
=1,2 , . . . ,N� which are defined by
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FIG. 4. �Color online� The stationary distribution functions
pst�K� �solid� and pst�L� �dotted� as a function of � �14� ��a� �
=+0.05 and �b� �=−0.05� �Eq. �38��.
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FIG. 5. �Color online� The TCF �1,i�t��i=1�solid� ,
2�dotted� ,3�dashed�� as a function of t for �=1000 ��a� �=+0.05
and �b� �=−0.05 �14�� �Eq. �39��. We omitted the figures of simu-
lations because they are almost the same ones as the analytical ones.
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bi = �s0
i + 1�/2. �43�

Then the number of interfaces 2k is expressed with sN+1
=s1 as

2k = 	
i=1

N

�bi�1 − bi+1� + �1 − bi�bi+1� . �44�

From Eqs. �42� and �44�, we now see that QN
−1 is the partition

function Z for the N-body system

Z = 	
bi=0,1

�FB/FA�	i=1,N�bi�1−bi+1�+�1−bi�bi+1�. �45�

With a traditional method such as the 2�2 transfer matrix
one, it is easily confirmed that pst in Eq. �42� actually satis-
fies the normalization condition.

With these preparations, we now explain how one can
confirm the validity of the stationary distribution �Eq. �42��.
From Eq. �40� one can express the transition probability �Eq.
�41�� in the form

p�s1
1,s1

2, . . . ,s1
N,t
s0

1,s0
2, . . . ,s0

N� = �1/2�N�1 + G�t��l�1 − G�t��m

� �1 + H�t��n�1 − H�t��p,

�46�

where the integers l ,m ,n , p are given in term of bi�i
=1,2 , . . . ,N� �Eq. �43�� and ai�i=1,2 , . . . ,N� defined by ai
= �s1

i +1� /2 as follows:

l = 	
i=1

N

�aibibi+1 + �1 − ai��1 − bi��1 − bi+1�� ,

m = 	
i=1

N

��1 − ai�bibi+1 + ai�1 − bi��1 − bi+1�� ,

n = 	
i=1

N

�aibi�1 − bi+1� + �1 − ai��1 − bi�bi+1� ,

p = 	
i=1

N

��1 − ai�bi�1 − bi+1� + ai�1 − bi�bi+1� . �47�

The eigenvalue problem �Eq. �24�� which is generalized to
the N dimensional case is written down as

	
bN=0

1

¯ 	
b1=0

1

�1/2�N�1 + G�t��l�1 − G�t��m

� �1 + H�t��n�1 − H�t��p � QN��1 − G�t�2�/�1 − H�t�2��k

= QN��1 − G�t�2�/�1 − H�t�2��q, �48�

where k is given by Eq. �44�. Now what should be checked is
whether the right-hand side of Eq. �48� corresponds to
pst�s1

1 ,s1
2 , . . . ,s1

N�, that is, whether the number q on the right-
hand side of Eq. �48� is given by

q = �1/2�	
i=1

N

�ai�1 − ai+1� + �1 − ai�ai+1� . �49�

After lengthy calculations it is confirmed that Eq. �49� is
really valid.

B. TCFs

Next let us consider the TCF in the range 0� t��, which
is defined by

�1k
N �t� = ��1�t��k�0�� = 	

�1�t�=−1

+1

	
�k�0�=−1

+1

�1�kpst„�1�t�;�k�0�… ,

�50�

where

pst„�1�t�;�k�0�… � 	
s0
i �i�k�

pst„s0
1, . . . ,s0

k = �k�0�, . . . ,s0
N
…

� p„�1,t
s0
1, . . . ,s0

k = �k�0�, . . . ,s0
N
…

�51�

By using Eq. �40�, it is seen that �1k
N �t� is expressed as

�1k
N �t� = 	

s0
i

�G�t��pst�s0
1 = 1, . . . ,s0

k = 1, . . . ,s0
N = 1�

+ pst�s0
1 = 0, . . . ,s0

k = 0, . . . ,s0
N = 0� − pst�s0

1 = 1, . . . ,s0
k

= 0, . . . ,s0
N = 1� − pst�s0

1 = 0, . . . ,s0
k = 1, . . . ,s0

N = 0��

+ H�t��pst�s0
1 = 0, . . . ,s0

k = 1, . . . ,s0
N = 1�

+ pst�s0
1 = 1, . . . ,s0

k = 0, . . . ,s0
N = 0� − pst�s0

1 = 0, . . . ,s0
k

= 0, . . . ,s0
N = 1� − pst�s0

1 = 1, . . . ,s0
k = 1, . . . ,s0

N = 0��� .

�52�

Here, we notice that the sum over s0
i = 
1 in Eq. �52� is

performed for i=2, . . . ,k−1,k+1, . . . ,N−1. This part of the
calculation is similar to the calculation of Z in the previous
subsection and we arrive at the final results for the TCF of
the form

�1k
N �t� = �pN+1−k�m exp�− ����k−1exp�− �t�

+ pk−1�m exp�− ����N+1−kexp��t��/�pN

+ �m exp�− ����N��k = 1, . . . ,N� . �53�

It is readily seen that the general results �Eq. �42�� for pst and
�Eq. �53�� for the TCF, reduce to the corresponding results
for the cases N=2 and N=3, presented in Secs. III B and
III D, respectively.

In passing we give one remark as to the summation 	s0
i in

Eq. �52�. When k is 1, this sum is over s0
i with i

=2,3 , . . . ,N−1. Similarly when k=N, we sum over s0
i with

i=2,3 , . . . ,N−1.

V. SOME REMARKS

In this paper we considered stochastic dynamics in many-
body systems, where two-state particles are unidirectionally
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coupled with delay. For a system consisting of few particles,
we found analytic expressions for the TCF and the pst, which
agree well with numerical experiments. Particle correlations,
as observed from the pst and various TCF’s, could be inter-
preted based on correlations between neighboring particles.
In this sense one can say that the correlations due to feed-
back for the case N=1 are the building blocks for correla-
tions in many particle systems.

From pst for the general N-body problem �Eqs. �42� and
�45�� we have an interesting map from a system with unidi-
rectional coupling to a system with nearest-neighbor cou-
pling. That is, let us express Z of Eq. �45� as

Z = 	
bi=0,1

exp�2k ln�FB/FA�� = 	
bi=0,1

exp�− E
ln�FB/FA�
� .

�54�

Here E, the energylike quantity of the system is

E = 2k�� � 0�, E = − 2k�� � 0� , �55�

where use is made of Eqs. �30� and �32� to decide the sign of
ln�FB /FA�. Thus it is seen that the energy of an interface is
positive for ��0 and negative for ��0. Since there are
2�N ! / ��2k� ! �N−2k� ! � ways of putting 2k interface on the
N spin system, with the factor of 2 denoting the two possi-
bilities of s1= 
1, one can estimate the most probable num-
ber of the interface 2km.p by maximizing, with ��FB /FA,

G = �2kN ! /��2k� ! �N − 2k� ! � . �56�

It is seen that

2km.p/N = �/�1 + �� , �57�

which is plotted in Fig. 6. For �=1, corresponding to �=0,
i.e., 	1=	2 and m=0 �Eq. �30��, or �→
, we have
2km.p /N=1 /2 since interface energy is zero and only the en-
tropy matters. As interface energy becomes large �� is de-

creasing from 1�, interface number decreases. These effects
are already seen in Figs. 1 and 4.

It is noted here that for the unidirectional coupling with
delay, one cannot see any transition phenomena in the large
N limit. On the other hand, for the global coupling with
delay, some kind of transitions, such as ordering phase tran-
sitions and appearance of oscillatory behaviors due to a Hopf
bifurcation, are reported in the limit N→
 �15�. It may be of
some interest to see how our approach could be applied to
study other stochastic models with more realistic feedback
interaction.

Finally, we note that the circular boundary condition em-
ployed in our model made the behavior of the system rather
simple. Without these conditions, the particle symmetry,
mentioned just below Eq. �21�, does not hold and conse-
quently the number of independent pst and TCF will be of the
order of N2. At the moment we could not find analytic solu-
tions for this case.
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